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Abstract—In this investigation, a SAIS (Susceptible-Alert-Infected-
Susceptible) M/M/1 queueing model with alert, infection, and 
vaccination has been considered. The main focus of this work is on 
the vaccination to prevent the infection in a population. The 
vaccination is the power tool for the prevention of the diseases 
spreading over the population size.  Susceptible person become alert 
when symptoms of the disease can be seen on them and the alert may 
be injected due to more infection. The provision of vaccination is 
provided in alert stage. Also alert may be change into infected person 
and infected may be again change into susceptible. The transition 
rates as followed by exponential distribution. A Markov model is 
developed by using inflow and outflow transition rates of the model. 
The transient state probabilities are evaluated by solving the 
transient state equations by using runge kutta method and which are 
further used for calculating the model performances. A numerical 
illustration is also provided to validate the model.   
 
Keywords: SAIS Epidemic Model, Infection, Vaccination, Markov 
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1. INTRODUCTION 

Epidemic models play a critical role in disease dynamics for 
providing the internal assessment to current biological 
scenario. The provision of vaccination is proved helpful in the 
prevention of many epidemics with the recovering from the 
symptoms of these diseases. Markov modeling is very much 
useful for predicting the behavior of epidemic and disease 
models. Some remarkable work has been done by the research 
scholars in the field of epidemiology by considering markov 
and stochastic modeling. Longini et al. [1] did the statistical 
analysis of the stages of HIV infection using a Markov 
modeling. Gentleman et al. [2] considered a multi-state 
Markov models for analyzing incomplete disease history data 
with illustrations for HIV disease.  Debanne et al. [3] 
developed a multivariate Markov chain model to project 
tuberculosis (TB) progression among different races in the 
country. 

Trapman and Bootsma [4] established a relation between the 
spread of infectious diseases and the dynamics of M/G/1 
queues with processor sharing. Bature et al. [5] described a 
Markov chain model to use for tracking the movement of the 
virus from one generation to another in a period of 20 years. 

Sweeting et al. [6] considered multistate Markov modelling to 
explore the rate at which the Hepatitis C disease progresses by 
taking the experimental data. Lee et al. [7] used a Markov 
chain analysis to model the progression of the disease among 
vulnerable people, infective people and AIDS cases for the 
two races separately. Oyewole [8] discussed a discrete-time 
Markov process for HIV/AIDs epidemic modeling is to 
determine the behavior of the epidemic and to keep it under 
control. Bortolussi [9] investigated models of contiuos time 
markov chains in which some populations are approximated 
continuously while others are considered ad discrete. 
Giamberardino and Iacoviello [10] considered SIR epidemic 
model with the dynamics of Susceptible, Infected & Removed 
subjects and an optimal vaccination strategy. 

In the proposed work, an epidemic M/M/1 queueing model 
with alert, infection, vaccination and death has been taken into 
account. The provision of vaccination is applied to alert. The 
remaining paper is structured as follows. In section 2, we 
describe the model by explaining the assumptions, notations 
and the various states of the system. Section 3 presents the 
governing equations of the model by using the inflow and 
outflow state transition rates. The various system 
performances in terms of state probabilities are given in 
section 4. In section 5, a numerical illustration is facilitated to 
explore the validation of the model. Finally, conclusions are 
drawn in section 6. 

2. MODEL DESCRIPTION 

In this present work, we consider a epidemic queueing model 
with different states namely empty state, healthy state, alert 
state, vaccination state, infected state. We have consider a 
polpulation of size N which can be affected by an epiemic. 
Firstly, when the signs of this epidemic can be seeing in a 
healthy person, this stage at which he is not completely 
infected is known as alert. An alert person may be change into 
completely infected person by infected with this epidemic. 
The provision of the vaccination is also taken as a preventive 
tool to control on this epidemic. The vaccination is used when 
the healty person is affected partialy from the epidemic mean 
at alert state. All the transition rates from one state to another 
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state are taken as exponentially distributed. For the 
constraction of the model, the following assumptions are taken 
into consideration: 

 The population size is taken as N i.e. there are total N 
living being in the system. 

 Initially, the system is in empty state where there is no 
birth and no death and from this state after a birth system 
goes in the healty state. 

 The birth and death of the persons are exponentially 
distributed with the rates λ and μ. 

 The rate by which the healthy becomes alret is also 
exponentially distributed with the rate α1 and the rate by 
which the infection take place is also exponentially 
distributed with the rate α2. 

 The rate by which the alert changes into infected is also 
follow the exponential distribution with the mean β. 

 The vaccination is provided to alert persons with the 
exponentially distributed rates θ. 

 After the success of the vaccination the alert persons 
become healty and infected persons may be become 
healthy with the exponentially distributed rates γ1 and γ2, 
respectively.  

We develop the mathematical model by using some notations 
which are defined as below: 

N : The population size. 
Λ : The birth rate.  
Μ : The death rate.  
Α : The partial infection rate (alert rate). 
Β : The transition rate from alert state to infected state. 
Θ : The vaccination rate from the alert state. 
γ1 : The transition rate from alert state to healthy state. 
γ2 : The transition rate from infected state to healthy state. 

 

Let jP (t) be the transient state probability that the system 

being in jth         N,.....,3,2,1iwhere,i,I,i,V,i,A,i,H,0j   

state as shown in fig. 1 and j denotes the state of the system as 
follows: 

0 The empty state at which there in no birth and no 
death takes place. 

H, i The healthy state where there are i (i=1, 2, 3,…., 
N) healthy persons in system.  

A, i The alert state where there are i (i=1, 2, 3,…., N) 
alert persons in system.  

V, i The vaccination state for alerts where there are i 
(i=1, 2, 3,…., N) alert persons in system.  

I, i The infection state where there are i (i=1, 2, 3,…., 
N) infected persons in system.  
 

 

Fig. 1: State Transition Diagram 

3. THE GOVERNING EQUATIONS 

The steady state equations governing the epidemic model are 
constructed by equating the in-flow and out-flow (see fig. 1) 
as follows: 
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The transient probabilities of different states have been 
obtained by solving equations (1)-(11) by fourth order Runge-
Kutta technique. 
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4. PERFORMANCE MEASURES  

In section, our main objective of our investigation is to predict 
various performance metrics in terms of the steady state 
probabilities which are obtained by using fourth order Runge-
Kutta method in previous section. Some indices to 
characterize the system performance are as follows: 

 The expected number of healthy persons in the 
epidemic system is 

  )t(iPHE
N

1i
i,H



                                          (12) 

 The expected number of alert persons in the epidemic 
system is 

  )t(iPAE
N

1i
i,A



                                          (13) 

 The expected number of infected persons in the 
epidemic system is 

  )t(iPIE
N

1i
i,I



                                        (14) 

 The expected number of persons under the 
vaccination is 

  



N

1i
i,V )t(iPVE

1
                                        (15) 

5. NUMERICAL ILLUSTRATION 

For the validation of the model discussed in previous sections, 
we perform a numerical illustration for the transient analysis 
of the epidemic M/M/1 queueing model. We use Runge-Kutta 
technique (RKT) of fourth order for solving these equations, 
which is implemented by exploiting MATLAB’s ‘ode45’ 
function. For this, we have considered a time span with equal 
intervals. The numerical results by varying different 
parameters for various performance measures are summarized 
in the graphical presentations are also provided. For the 
computation purpose, we fix the values of the some 
parameters as follows: λ=0.1, μ=0.2, α1=0.0004, α2=0.0005, 
=0.3, γ1=0.0002, γ2=0.0001 for figures 2-4. 

In graph 2, the effect of vaccination rate θ on the expected 
number of infected persons E(I) has been shown by varying 
time. It is realized that the expected number of infected 
persons E(I) is decreases as the vaccination rate θ increases 
with increasing time. 

 

Fig. 2: Effect of θ on E(I) 

In fig. 3, the effect of vaccination rate θ on the expected 
number of alert persons E(A) is shown with the increment of 
time.  It is easily seen that E(A) is decreases as vaccination 
rate θ increases and the expected number of alert persons E(A) 
is increases as time increases .  

 

Fig. 3: Effect of θ on E(A) 

In the last in fig. 4, the relationship between the vaccination 
rate θ and the expected number of persons under vaccination 
persons E(V) is drawn. It is found that the expected number of 
persons under vaccination E(V) is increases as the vaccination 
rate θ  as well as time increases. 
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Fig. 4: Effect of θ on E(V) 

6. CONCLUSION 

In this paper, we deal with the modeling of an epidemic model 
with the use of M/M/1 queueing model. The various concepts 
such as alerts, infection and vaccination have been considered 
to cope with the real life issues. After constructing the model, 
the transient state equations are formed which are further used 
to find various system performances. We have also tried to 
provide a numerical example to find the numerical results for 
an epidemic model in the point of views of queueing theory. 
Also it is observed that the vaccination strategy improved the 
performance of the epidemic model. It is supposed that our 
investigation may be helpful for the analysis of epidemic 
model. 
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